Final Project; Pengu Pounce

Pengu Pounce — IT’S OVER!

I am ECSTATIC to say that I am finally done with this project! It has certainly been a dynamic experience.

As I had proposed, I thought of incorporating one of my favorite things ever into my final project –  my love for penguins. Therefore, I decided to create a fun little game where a Penguin called Pengu, has to jump over platforms — inspired by the Doodle Jump game. 

A lot has changed since my previous User Proposal, as my idea now is fully fleshed out/ In terms of the game itself, the primary objective is for Pengu to hop on different platforms till the timer ends — the person is supposed to last sixty seconds in the game. If the penguin falls off – then they lose.

In terms of the physical implementation, this game has four buttons: Restart, Left, Right, and Jump. 

There are several challenges I faced, most of them mainly to do with the game itself rather than the arduino.

For example, I was struggling with generating the actual platforms for the penguin to jump on. After I added the special ‘disappear’ platforms, it felt like the screen was being overcrowded. In addition, sometimes, the penguin would start on a disappear platform and therefore lose the game immediately,  so I decided on a set of three  normal platforms for the penguin to jump on at the start of the game. 

I also had struggled with making the platforms disappear once the penguin moved up, and ,make new ones appear. However, my friend had taught me about a handy concat built in function and filter, and as well as the spread operator, which I actually ended up finding useful and using it here now.

<iframe src=”https://editor.p5js.org/zv2029/full/otoQ9nLsh”></iframe>

Here is a link my complete p5.js sketch: https://editor.p5js.org/zv2029/sketches/otoQ9nLsh

Here is my code for the Arduino IDE that I used: 

 

const int jumpButtonPin = 10; // Button for jump
const int leftButtonPin = 13; // Button for move left
const int rightButtonPin = 4; // Button for move right
const int restartButtonPin = 2; // Button for restart

void setup() {
  pinMode(jumpButtonPin, INPUT_PULLUP);
  pinMode(leftButtonPin, INPUT_PULLUP);
  pinMode(rightButtonPin, INPUT_PULLUP);
  pinMode(restartButtonPin, INPUT_PULLUP); 
  Serial.begin(9600);
}

void loop() {
  // Read button states
  int jumpState = digitalRead(jumpButtonPin);
  int leftState = digitalRead(leftButtonPin);
  int rightState = digitalRead(rightButtonPin);
  int restartState = digitalRead(restartButtonPin);


  if (jumpState == LOW) {
    Serial.println("JUMP");
  } else if (leftState == LOW) {
    Serial.println("LEFT");
  } else if (rightState == LOW) {
    Serial.println("RIGHT");
  } else if (restartState == LOW) {
    Serial.println("RESTART");
  } else {
    Serial.println("IDLE"); 
  }

}

Here is a video of the game being played:

 

Assignment 10: Testing Phase

Title: Testing Phase of “Catch the Horse” – Insights and Improvements

With the development of “Catch the Horse” completed, I conducted user testing to evaluate the intuitiveness, playability, and overall experience of the game. The goal of this phase was to observe how players interacted with the game, identify areas where they struggled, and determine how the gameplay mechanics could be made more intuitive and accessible.

User Testing Overview

During testing, participants were asked to engage with the game without receiving any prior instructions or guidance. The goal was to simulate the experience of a first-time player encountering the game. I recorded their interactions and noted points of confusion, questions they asked, and their overall feedback.

Observations and Findings

  1. What Users Figured Out on Their Own
    • Jump, Bird, and Rock Buttons:
      Players intuitively understood the jump mechanic and the functions of the bird and rock buttons. These actions had immediate visual feedback (e.g., the cowboy jumped, birds appeared, or rocks were thrown), which made the controls feel natural and responsive.
  2. What Needed Explanation
    • Lasso Button (Choice Button):
      Players struggled to understand how the lasso button worked. I had to explain that pressing the lasso button initiated the “Choice Screen” and that they could select between Skill or Luck to catch the horse.

      • Skill vs. Luck:
        The difference between the Skill and Luck options was unclear without explanation. Participants were unsure why they would choose one option over the other.
  • Interaction with Rocks and Birds:
    Although players understood how to use the rock and bird buttons, they were initially confused about how the cowboy was supposed to interact with these obstacles. For example, they weren’t sure if the rocks could be dodged or destroyed and if the birds required a specific action to avoid.

    What Worked Well

  • Physical Integration:
    The physical crouching mechanic, detected by the ultrasonic sensor, added an engaging and immersive element to the game. Users enjoyed the novelty of having to physically move to interact with the game.
  • Visual Feedback:
    Immediate visual feedback for the jump, bird, and rock mechanics allowed players to quickly understand these actions without explanation.
  • Game Flow and Balance:
    Cooldowns for the horse’s abilities (mud, fences, and booster) were well-received, as they maintained a fair and balanced gameplay experience.

    Lessons Learned

    • Mapping Between Controls and Gameplay:
      Intuitive mapping between controls and gameplay actions is critical. For example, the jump button and crouching were easy to grasp because the controls directly mirrored the in-game actions. However, abstract mechanics like the lasso required additional explanation due to their more complex interactions.
    • The Importance of Feedback:
      Immediate feedback helped players connect their actions to in-game effects. Enhancing feedback for less intuitive mechanics (like the lasso) will likely make the game easier to pick up.
    • Balancing Physical and Digital Gameplay:
      Players found the integration of physical actions (like crouching) and digital gameplay highly engaging. This balance between physical and virtual interaction should remain a cornerstone of the game’s design.

      Next Steps

      1. Add an Instructions Page or Tutorial:
        Include a brief tutorial or instructions page at the beginning of the game to explain the mechanics of the lasso button, Skill vs. Luck, and how to interact with obstacles like birds and rocks.
      2. Enhance In-Game Prompts:
        Add dynamic text prompts or animations during gameplay to guide players through challenging mechanics. For example:

        1. “Press J to Jump Over Rocks!”
        2. “Dodge Birds to Avoid Game Over!”

    Demonstration

Pingu Pounce — User Testing

I have made significant progress with my work, and have come close to a finish. For my project, a game called Pingu Pounce, I’ve decided to add physical controls to make the overall experience much more enjoyable and interactive.

I have used 4 buttons — A restart, left, right, and jump button.

Here I have attached a video of a classmate playing with my game and I received some overall feedback. This is not the final version of my project as I have many improvements left to do – namely implementing my buttons in a much more accessible way.

Over the remaining days, I will work on how to make my game more intuitive without me having to explain the instructions too much — perhaps I will add labels to my buttons to do so. 

IMG_8879

Reading Reflection 8

Reuse and Recycle: A reflection on Design Meets Disability

In Design Meets Disability, the idea of trickle-down effects made a lot of sense to me. The tech market’s priorities often align with majority demand, leaving designs for the disabled marginalized in terms of research and funding. Sectors like fashion or mass-market tech get the lion’s share of attention, while solutions for disabilities often lack the investment they deserve.

However, the book highlights a crucial skill for designers: recognizing the applicability of existing technology to new problems. While creating something original is commendable, repurposing an established design can be equally impactful. Legal hurdles, like patents, may limit financial gains from such adaptations, but progress shouldn’t be confined by a competitive or profit-driven mindset. True innovation lies in recognizing the value of existing tools to accelerate development and as designers or artists, we have the benefit of the sky being the limit to our creativity. Thus, repurposing existing technology is never frowned over by our kind as artists have the ability to bring their own touch to any project.

Assignment 9: Final project Proposal

Title: Catch the Horse
Mechanical Horse.mp4 – Google Drive

Concept:

“Catch the Horse” is an interactive two-player game that blends physical and virtual gameplay to create an engaging experience. A physical mechanical horse and a digital cowboy chase are brought to life through Arduino and p5.js integration. The game revolves around strategy, reflexes, and decision-making, where one player controls a cowboy trying to catch a runaway horse, while the other player actively defends the horse using tools like mud, fences, and boosters. With immersive elements like crouching to dodge obstacles and precise timing challenges to throw a lasso, the game offers an interactive and entertaining experience.

Overview:

In “Catch the Horse,” a virtual horse escapes its stable and leaves the screen, triggering a motor that animates a physical mechanical horse placed beside the monitor. The cowboy avatar must chase after the horse, dodging obstacles and using a lasso to attempt capture. The horse player can make the chase challenging with mud, fences, and boosters, while the cowboy must rely on strategic decision-making and skill to win.

Gameplay Mechanics

The Cowboy’s Role (Player 1)

  • Chasing the Horse:
    • The cowboy avatar moves left and right using a joystick to dodge mud and other obstacles.
    • Physical crouching (detected by an ultrasonic sensor) is required to avoid fences thrown by the horse player.
    • At set intervals, the cowboy can attempt to throw a lasso to capture the horse or a bag of treats.
  • Lasso Mechanic:
    The cowboy has two options when throwing the lasso:

    1. Catch the Horse (Luck-Based):
      • A meter appears with an oscillating needle that moves slower, making it easier to time the throw.
      • If successful, the player rolls a virtual dice. A roll of 5 or 6 captures the horse; otherwise, the chase continues.
    2. Catch the Treats (Skill-Based):
      • The meter’s needle oscillates faster, requiring greater precision to time the throw.
      • Success guarantees the bag of treats, which stops the horse and ensures a win.
      • Failure results in no capture, and the chase continues. Speedometer meter with arrow for dashboard. - Vector. 30715312 Vector ...

The Horse’s Role (Player 2)

  • The horse player uses three buttons to evade capture:
    1. Mud Throw: Throws mud obstacles that the cowboy must dodge with the joystick.
    2. Fence Throw: Launches fences that the cowboy must crouch to avoid.
    3. Booster: Temporarily speeds up the horse, preventing the cowboy from throwing a lasso.
  • All buttons have cooldown periods to maintain fairness and balance. Robot Unicorn Attack 2 (Gameplay) Android / iOS - YouTube

Challenges and Solutions

  1. Mechanical Horse Durability:
    • The motor runs at a controlled speed to prevent stress on the fragile body.
  2. Button Cooldowns and Fairness:
    • Cooldown timers for the horse player’s buttons ensure balanced gameplay.
  3. Accurate Crouch Detection:
    • Calibrate the ultrasonic sensor to detect movement precisely while avoiding false triggers.

Winning Conditions

  • The cowboy wins if they:
    • Successfully throw the lasso and roll a 5 or 6.
    • Successfully capture the bag of treats.
  • The horse wins if:
    • The cowboy fails all lasso attempts, or the timer runs out.

 

WEEK 11 – EXCERSISE(WORKED WITH AMNA)

EXCERCISE 1: ARDUINO TO P5.JS COMMUNICATION

RESULT:

TASK 1 VIDEO

P5 CODE:

let sensorValue = 0; // Variable to store sensor data
function setup() {
  createCanvas(640, 480);
  textSize(18);
  if (!serialActive) {
    setUpSerial(); // Start serial communication with Arduino
  }
}
function draw() {
  // Set the background to dark blue and purple hues based on the sensor value
  background(map(sensorValue, 0, 1023, 50, 75), 0, map(sensorValue, 0, 1023, 100, 150));
  // Map the sensor value to control the ellipse's horizontal position
  let ellipseX = map(sensorValue, 0, 1023, 0, width);
  // Draw the ellipse in the middle of the screen
  fill(255); // White ellipse for contrast
  ellipse(ellipseX, height / 2, 50, 50);
  // Display connection status
  fill(255); // White text for readability
  if (!serialActive) {
    text("Press Space Bar to select Serial Port", 20, 30);
  } else {
    text("Connected", 20, 30);
    // Display the current sensor value
    text("Sensor Value = " + str(sensorValue), 20, 50);
  }
}
function keyPressed() {
  if (key === " ") {
    setUpSerial(); // Start the serial connection when the spacebar is pressed
  }
}
// This function is called by the web-serial library with each new line of data
function readSerial(data) {
  if (data != null) {
    // Parse the sensor value from the Arduino
    sensorValue = int(trim(data));
  }
}

ARDUIN CODE:

int sensorPin = A0; // Sensor connected to A0

void setup() {
  Serial.begin(9600); // Start serial communication
}

void loop() {
  int sensorValue = analogRead(sensorPin); // Read sensor value
  Serial.println(sensorValue); // Send the value to p5.js
  delay(10); // Small delay to avoid overwhelming the serial buffer
}

EXCERCISE 2: P5 TO ARDUINO COMMUNICATION

RESULT:

TASK 2 VIDEO

P5 CODE:

let brightness = 0; // Brightness value to send to Arduino

function setup() {
  createCanvas(640, 480);
  textSize(18);

  // Check if serial is active and set it up if not
  if (!serialActive) {
    setUpSerial(); // Initialize serial communication
  }
}

function draw() {
  background(30); // Dark background
  fill(255); // White text
  text("Use the UP and DOWN arrows to control LED brightness", 20, 30);

  // Display the current brightness value
  text("Brightness: " + brightness, 20, 60);
}

function keyPressed() {
  if (keyCode === UP_ARROW) {
    // Increase brightness
    brightness = min(brightness + 10, 255); // Max brightness is 255
    sendBrightness();
  } else if (keyCode === DOWN_ARROW) {
    // Decrease brightness
    brightness = max(brightness - 10, 0); // Min brightness is 0
    sendBrightness();
  } else if (key === " ") {
    // Start serial connection when spacebar is pressed
    setUpSerial();
  }
}

function sendBrightness() {
  if (writer) {
    // Send the brightness value to Arduino
    writer.write(brightness + "\n");
  } else {
    console.error("Writer is not available. Please connect to the serial port.");
  }
}

ARDUINO CODE:

int ledPin = 9; // LED connected to PWM pin 9
int brightness = 0; // Variable to store brightness value from p5.js

void setup() {
  Serial.begin(9600); // Start serial communication
  pinMode(ledPin, OUTPUT); // Set LED pin as an output
}

void loop() {
  // Check if data is available to read
  if (Serial.available() > 0) {
    // Read the brightness value sent from p5.js
    brightness = Serial.parseInt();

    // Constrain the brightness value to 0-255
    brightness = constrain(brightness, 0, 255);

    // Set the LED brightness
    analogWrite(ledPin, brightness);
  }
}

EXCERCISE 3: BI-DIRECTIONAL COMMUNICATION

RESULT:
TASK 3 VIDEO

P5 CODE:

let velocity;
let gravity;
let position;
let acceleration;
let wind;
let drag = 0.99;
let mass = 50;
let sensorValue = 0; // Variable to store wind value from Arduino
let windStrength = 0; // Wind force determined by the sensor

function setup() {
  createCanvas(640, 360);
  noFill();
  position = createVector(width / 2, 0);
  velocity = createVector(0, 0);
  acceleration = createVector(0, 0);
  gravity = createVector(0, 0.5 * mass);
  wind = createVector(0, 0);

  // Initialize serial communication
  if (!serialActive) {
    setUpSerial();
  }
}

function draw() {
  background(255);

  // Apply gravity
  applyForce(gravity);

  // Apply wind (continuously updated from sensor)
  wind.x = map(sensorValue, 0, 1023, -2, 2); // Map sensor value to a stronger wind range
  applyForce(wind);

  // Update position and velocity
  velocity.add(acceleration);
  velocity.mult(drag);
  position.add(velocity);
  acceleration.mult(0);

  // Draw the ball
  ellipse(position.x, position.y, mass, mass);

  // Check for bounce
  if (position.y > height - mass / 2) {
    velocity.y *= -0.9; // A little dampening when hitting the bottom
    position.y = height - mass / 2;

    // Notify Arduino about the bounce
    sendBounce();
  }
}

function applyForce(force) {
  // Newton's 2nd law: F = M * A
  let f = p5.Vector.div(force, mass);
  acceleration.add(f);
}

// Notify Arduino when the ball bounces
function sendBounce() {
  if (writer) {
    writer.write('1\n'); // Send the bounce signal
  }
}

// Read wind control value from Arduino
function readSerial(data) {
  if (data != null) {
    // Parse the sensor value directly into a variable for wind force
    sensorValue = int(trim(data));
  }
}

// Handle serial setup (using the serial.js file)
function keyPressed() {
  if (key === " ") {
    setUpSerial();
  }
}

ARDUINO CODE:

const int ledPin = 9;      // LED connected to pin 9
const int sensorPin = A0;  // Analog sensor for wind control
int sensorValue = 0;       // Variable to store sensor value from analog pin

void setup() {
  Serial.begin(9600);  // Start serial communication
  pinMode(ledPin, OUTPUT);  // Set LED pin as output
}

void loop() {
  // Read the sensor value and send it to p5.js
  sensorValue = analogRead(sensorPin);
  Serial.println(sensorValue);

  // Check if a bounce signal is received
  if (Serial.available() > 0) {
    char command = Serial.read();
    if (command == '1') {
      // Turn on the LED
      digitalWrite(ledPin, HIGH);
      delay(100);  // Keep the LED on briefly
      digitalWrite(ledPin, LOW);  // Turn off the LED
    }
  }
}

 

WEEK 11 READING

In my opinion, this reading challenges the idea that design for disability should only focus on solving problems. The prosthetic designs by Aimee Mullins show that disability can spark bold and exciting ideas, not just practical solutions. I think this mindset is what’s missing in most assistive designs today. Why settle for blending in when design can help people stand out and feel empowered? Similarly, the trend of customizing prosthetic eyes with unique designs—like intricate patterns or bold colors—proves that assistive devices can be about self-expression. These designs don’t try to look like a “normal” eye; instead, they let people proudly showcase their personalities. This is exactly the kind of creativity the design world needs.

The reading also points out a major flaw in how we think about inclusivity in design. Universal design sounds great in theory, but trying to make one product fit everyone often dilutes its purpose. For example, overly adjustable furniture for kids with disabilities can end up alienating them instead of including them. Instead of trying to be “one size fits all,” designers should focus on creating multiple, simple solutions that truly meet the needs of different individuals. This isn’t about making disability invisible—it’s about making design human and the diversity that comes with it.

Assignment 8: In class Exercises (Serial Communication)

Exercise 1 – Moving Ellipse

Prompt: Make something that uses only one sensor on Arduino and makes the ellipse in p5 move on the horizontal axis, in the middle of the screen, and nothing on Arduino is controlled by p5.
Arduino Code
Demonstration:

Exercise 2 – LED Brightness

Prompt: Make something that controls the LED brightness from p5

Arduino Code

P5.js Sketch

Demonstration:

Exercise 3 – Bouncing Ball

Prompt: Take the gravity wind example (https://editor.p5js.org/aaronsherwood/sketches/I7iQrNCul) and make it so every time the ball bounces one led lights up and then turns off, and you can control the wind from one analog sensor

Arduino Code

P5.js Sketch

Demonstration:

Assignment 8 – In-Class Exercises (by Jheel and Linda)

EXERCISE 01: ARDUINO TO P5 COMMUNICATION 

Make something that uses only one sensor on arduino and makes the ellipse in p5 move on the horizontal axis, in the middle of the screen, and nothing on arduino is controlled by p5.

In our solution, the we used a photoresistor to detect the surroundling light level. The ball in the screen then moves to the left when it’s dark and to the right when it’s bright.

Please find the demonstration video here:

Exercise 1

Please find the p5.js sketch here 

let port, reader, writer;
let serialActive = false;

async function getPort(baud = 9600) {
  let port = await navigator.serial.requestPort();
  await port.open({ baudRate: baud });

  // create read & write streams
  textDecoder = new TextDecoderStream();
  textEncoder = new TextEncoderStream();
  readableStreamClosed = port.readable.pipeTo(textDecoder.writable);
  writableStreamClosed = textEncoder.readable.pipeTo(port.writable);

  reader = textDecoder.readable
    .pipeThrough(new TransformStream(new LineBreakTransformer()))
    .getReader();
  writer = textEncoder.writable.getWriter();

  return { port, reader, writer };
}

class LineBreakTransformer {
  constructor() {
    this.chunks = "";
  }

  transform(chunk, controller) {
    this.chunks += chunk;
    const lines = this.chunks.split("\r\n");
    this.chunks = lines.pop();
    lines.forEach((line) => controller.enqueue(line));
  }

  flush(controller) {
    controller.enqueue(this.chunks);
  }
}

async function setUpSerial() {
  noLoop();
  ({ port, reader, writer } = await getPort());
  serialActive = true;
  runSerial();
  loop();
}

async function runSerial() {
  try {
    while (true) {
      const { value, done } = await reader.read();
      if (done) {
        reader.releaseLock();
        break;
      }
      readSerial(value);
    }
  } catch (e) {
    console.error(e);
  }
}

let rVal = 0; // Value from photoresistor

function setup() {
  createCanvas(640, 480);
  textSize(18);
}

function draw() {
  background(245, 245, 200);
  fill(0);

  if (!serialActive) {
    text("Press Space Bar to select Serial Port", 20, 30);
  } else {
    text("Connected", 20, 30);
    text('Photoresistor Value = ' + str(rVal), 20, 50);

    // Map the sensor value to the x-position of the ellipse
    let xPos = map(rVal, 0, 1023, 0, width);
    fill(100, 123, 158);
    ellipse(xPos, height / 2, 50, 50);
  }
}

function keyPressed() {
  if (key == " ") {
    setUpSerial();
  }
}

function readSerial(data) {
  if (data != null) {
    let fromArduino = trim(data); // Remove any whitespace
    rVal = int(fromArduino); // Convert the string to an integer
  }
}

Please find the Arduino code here:

void setup() {
  // put your setup code here, to run once:
  Serial.begin(9600);
}


void loop() {
  // put your main code here, to run repeatedly:
  int sensorValue = analogRead (A2);
  Serial.println (sensorValue);
  Serial.write(sensorValue);
  delay (1);
}

EXERCISE 02: P5 TO ARDUINO COMMUNICATION 

Make something that controls the LED brightness from p5.

In our solution, we used an LED whose brightness changes according to the slider value.

  • Please find the demonstration video here

Exercise 2

  • Please find the p5.js sketch here 
let brightness = 0; 
let slider;

function setup() {
  createCanvas(400, 200);
  //make the slider
  slider = createSlider(0, 255, 127); 
  slider.position(10, 10);
  slider.style('width', '300px');

  let serialButton = createButton("Connect to Arduino");
  serialButton.position(10, 50);
  serialButton.mousePressed(setUpSerial);
}

//troubleshoot
function readSerial(data) {
  console.log("Received data:", data); // Log the received data to the console
}

function draw() {
  background(220);
  brightness = slider.value(); 
  fill(0);
  textSize(16);
  text(LED Brightness: ${brightness}, 10, 100);

  // Send brightness value to Arduino via Serial
  if (serialActive) {
    writeSerial(brightness + "\n"); // Append a newline character
  }
}
  • Please find the Arduino code here:
int ledPin = 9; // PWM pin connected to LED

void setup() {
  Serial.begin(9600);
  pinMode(ledPin, OUTPUT);
}

void loop() {
  int bright;

  if (Serial.available() > 0) {
    bright = Serial.parseInt();
    analogWrite(ledPin, bright);
  }
}

EXERCISE 03: BI-DIRECTIONAL COMMUNICATION

Every time the ball bounces one led lights up and then turns off, and you can control the wind from one analog sensor.

  • Please find the p5.js sketch here 
let port, reader, writer;
let serialActive = false;

async function getPort(baud = 9600) {
  let port = await navigator.serial.requestPort();
  await port.open({ baudRate: baud });

  // create read & write streams
  textDecoder = new TextDecoderStream();
  textEncoder = new TextEncoderStream();
  readableStreamClosed = port.readable.pipeTo(textDecoder.writable);
  writableStreamClosed = textEncoder.readable.pipeTo(port.writable);

  reader = textDecoder.readable
    .pipeThrough(new TransformStream(new LineBreakTransformer()))
    .getReader();
  writer = textEncoder.writable.getWriter();

  return { port, reader, writer };
}

class LineBreakTransformer {
  constructor() {
    this.chunks = "";
  }

  transform(chunk, controller) {
    this.chunks += chunk;
    const lines = this.chunks.split("\r\n");
    this.chunks = lines.pop();
    lines.forEach((line) => controller.enqueue(line));
  }

  flush(controller) {
    controller.enqueue(this.chunks);
  }
}

async function setupSerial() {
  noLoop();
  ({ port, reader, writer } = await getPort());
  serialActive = true;
  runSerial();
  loop();
}

async function runSerial() {
  try {
    while (true) {
      const { value, done } = await reader.read();
      if (done) {
        reader.releaseLock();
        break;
      }
      readSerial(value);
    }
  } catch (e) {
    console.error(e);
  }
}


////////////////////////////////////////////////////////////

let velocity;
let gravity;
let position;
let acceleration;
let wind;
let drag = 0.99;
let mass = 50;
let windSpeed;


function setup() {
  createCanvas(640, 360);
  noFill();
  position = createVector(width / 2, 0);
  velocity = createVector(0, 0);
  acceleration = createVector(0, 0);
  gravity = createVector(0, 0.5 * mass);
  wind = createVector(0, 0);
  textSize(16);
}

function draw() {
  background(0);
  
  if (serialActive){
    wind.x = map(windSpeed, 0, 1023, -1, 1);
  }
  applyForce(wind);
  applyForce(gravity);
  velocity.add(acceleration);
  velocity.mult(drag);
  position.add(velocity); 
  acceleration.mult(0);
  ellipse(position.x, position.y, mass, mass);
  console.log("Wind Speed: " + windSpeed); // For debugging

  if (position.y > height - mass / 2) {
    velocity.y *= -0.9; // A little dampening when hitting the bottom
    position.y = height - mass / 2;

    // Send signal to Arduino on bounce
    if (serialActive) {
      sendBounceSignal();
    }
  }

  if (!serialActive) {
    fill(255);
    text("Press SPACE to connect to Serial Port", 20, 30);
  } else {
    fill(0, 255, 0);
    text("Connected to Serial Port", 20, 30);
  }
}

function applyForce(force) {
  // Newton's 2nd law: F = M * A or A = F / M
  let f = p5.Vector.div(force, mass);
  acceleration.add(f);
}

function keyPressed() {
  if (keyCode == LEFT_ARROW) {
    wind.x = -1;
  }
  if (keyCode == RIGHT_ARROW) {
    wind.x = 1;
  }
  if (key == " ") {
    if (!serialActive) {
      setupSerial();
    } else {
      mass = 50;
      position.y = -mass;
      velocity.mult(0);
    }
  } 
}

async function setupSerial() {
  try {
    noLoop();
    // ({ port, reader, writer } = await getPort());
    
    port = await navigator.serial.requestPort();
    await port.open({ baudRate: 9600 });
    
    
    // Create a TextDecoderStream to decode incoming bytes to text
    const textDecoder = new TextDecoderStream();
    const readableStreamClosed = port.readable.pipeTo(textDecoder.writable);

    // Create the reader to read from the decoded text stream
    reader = textDecoder.readable
    .pipeThrough(new TransformStream(new LineBreakTransformer())) // Optional: split data by lines
    .getReader();
    
    writer = port.writable.getWriter();
    serialActive = true;
    // Start reading data after successfully opening the port
    runSerial();
    loop();
  } catch (err) {
    console.error("Serial connection failed:", err);
    serialActive = false;
  }
}

function readSerial(data) {
  if (data != null) {
    let fromArduino = trim(data); // Remove any whitespace
    console.log(data);
    if (fromArduino !== "") {
      fromArduino = parseInt(fromArduino, 10);
      windSpeed = int(fromArduino); // Convert the string to an integer
      
    }
  }
}


async function sendBounceSignal() {
  try {
    if (writer) {
      await writer.write(new TextEncoder().encode("bounce\n"));
    }
  } catch (err) {
    console.error("Failed to send bounce signal:", err);
  }
}

  • Please find the Arduino code here:
int ledPin = 13; // LED pin#
int sensorPin = A0;
int windValue;

void setup() {
  pinMode(ledPin, OUTPUT);
  Serial.begin(9600);
  
}

void loop() {
  windValue = analogRead(sensorPin); // Read the sensor value
  Serial.println(windValue); // Send the value to the serial port
  // Serial.write(windValue);
  

  if (Serial.available() > 0) {
    String data = Serial.readStringUntil('\n'); // Read data until newline
    if (data == "bounce") {
      digitalWrite(ledPin, HIGH);
      delay(100); // Keep the LED on for 100ms
      digitalWrite(ledPin, LOW);
    }
  }
}

 

WEEK 11 – READING

DESIGN MEETS DISABILITY

In my opinion, I can’t help feeling frustrated with how slow the world is to adopt these ideas. Why are we still obsessed with invisibility and blending in when we should be celebrating individuality? Aimee Mullins’ prosthetics are a perfect example. they’re not just tools, they’re empowering, glamorous statements of self-expression. To me, this is where design for disability needs to go, embracing boldness rather than hiding behind outdated notions of what’s “appropriate.” It’s frustrating that hearing aids, for example, are still stuck in a cycle of being made to “disappear” rather than be celebrated, unlike glasses that have evolved into full-blown fashion accessories.

I think the text makes a strong case for simplicity in design, but I also feel like it’s dancing around the bigger issue of why it takes products like Apple’s iPod to show us how simplicity can be revolutionary. Everyday products for people with disabilities shouldn’t just be functional, they should inspire pride. In my opinion, the most significant missed opportunity is the lack of integration between mainstream and disability-focused design. The examples here, like dementia-friendly radios and HearWear, are great, but they’re still treated as niche. We need to stop separating these worlds and start making design inclusive from the start.